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Polynomial Lax pairs for the chiral 0(3)-field equations 
and the Landau-Lifshitz equation 
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t Mathematisches Instim, LJniversitXt Leipzig, Augushlsplaa IO, 04109 Leipzig, Germany 
$Faculty of Mathematics and Informatics, St Kliment Ohridsld University, Sofia, Bulgaria 

Received 16 February 1995 

Abstract New Lax pairs for the chiral 0(3)-field equations and for the Jaulau-J.,ifshiU 
equation have been found. In c o n m t  to the already-known pairs, these pain are polynomial in 
the spectral parameter A. We also find a new 4 x 4 Lax pair in the ose of cnoidal waves 'for 
the generalized Landau-Lifshiu equation. 

1. Introduction 

In recent decades considerable attention has been paid to the so-called soliton equations. It is 
well known that their remarkable properties (see e.g. [ 11) are as a result of being able to apply 
methods of integration based on the inverse scattering problems, and their modifications 
such as the 3 problem. The main point, however, is the possibility of expressing the given 
evolution equation (or system of such equations) in the so-called Lax form or, equivalently, 
in the form of the compatibility condition 

(1) 

(2) 

[a, - U, a, - VI = a,u - a,v+ [U ,  VI = o 

(a, - U)Y = o 
of the two linear systems 

(a, - v ) ~  = 0. 
Here, the matrix valued functions U and V depend on the spectral parameter A and on a 
number of variables q, u2, .  . . usually called potential functions. The evolution equation 
(or system of equations) is written in terms of the potential functions. We shall deal with 
evolution equations with one spatial variable x E B and as usual t is the time variable. 

At the present time there are a number of approaches to the soliton equations based 
on a variety of theories, for example the spectral theory of operators, the Lie group and 
the Lie algebra theory, algebraic and differential geometry and others which are difficult to 
even list. However, we believe that there is one important problem which is open and until 
now has not been given much attention. The question is whether the results of the main 
consmctions through which the soliton equations are solved, such as the dressing method 
of Zakharov-Shabat, the Riemann-Hilbert problem or the finite gap integration method, 
depend or do not depend on the choice of the UV pair, as the constructions themselves 
strongly rely upon this choice. 

It is clear that compatibility condition (1) is expressed through the commutator [U,  V ]  
and, therefore, if U and V belong to a certain Lie algebra g, we can write the same 
compatibility condition in another faithful representation of g and in this way obtain the 
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same evolution equation. It is not evident whether the construction of the exact solutions 
mentioned above will be compatible with such an alteration of the representation. One of 
the authors has devoted time to some aspects of this problem in [Z]; it seems that there 
remains far more to be done, even in the most trivial of cases when the pairs differ by 
the choice of the representation. The problem becomes more complicated if we introduce 
essentially different UV pairs. It should be mentioned that finding UV pairs is by no means 
a straightforward process and that, in order to find them, some good fortune is necessary. 
Thus, the existence of different pairs is quite a rare phenomena and this possibly explains 
why the problem we mentioned above has not been given much attention up to now. 

L A  Bordag and A B Ymvski 

2. Polynomial 6 x 6 pairs for the chiral 0(3)-field equations and for the 
Landau-Lifshitz equation 

The system of chiral-field equations can be written in the form 131 

u : + u ~ - u x J w = O ,  
v : - w = - v X  J u = O  

U' = v2 = 1 J = diag(j1, jz, j 3 )  I (3) 

where U = ( U T ,  uzI ug), w = (U,. uz, u3) are the two vector functions depending on n and 
t, and x denotes the vector product. 

The Landau-Lifshitz equation [4] 

ut = U x uzr + U x K u  U' = 1 K = diag(k1, kz, b) (4) 

is written in terms of the one vector function U = ( U T ,  U Z ,  ug), where the matrix K plays 
the same role as J .  

For convenience we shall write equations (3) and (4) in a different form. Let us 
introduce the linear mapping M : R3 + so(3) where so(3) is the Lie algebra of the 3 x 3 
skew-symmetric matrices 

0 U3 -U2 

M(u) = M(ui, UZ. ~ 3 )  = i;,.::, "d. (5) 

Clearly, :- 

[M(u) ,  M(v)] = -M(u x W) (6) 
and, therefore, we can express (3) and (4) in the following equivalent forms. 

(A) Chiral-field equations (CFE): 

(7) 
M(U)t + M(U)x + [M(U), M(Jv ) l=  0 I M(w): - M(v).x + [M(w) ,  M(Ju)I,= 0 

= w2 = 1. 

(B) Landau-Lifshitz equation (LLE): 

M ( U ) ~  + IM(u). M(u),,l+ [M(u),  M(Ku) l=  0 U' = 1. (8) 
Our inspiration to construct 6 x 6 pairs came from reading the last lines in [5], where 

the author claimed that there exist UV pairs which are linear in A for CFE and LLE and gave 
formulae for the U matrices in both cases. However, as far as we know the final answer 
has not been obtained there or elsewhere. Moreover, we failed to obtain a pair h e a r  in A 
for LLE; the pair we obtained depends quadratically on A and is, in this sense, completely 
new. 
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f;), where a, b, c, d Below we shall write the 6 x 6 matrices in the block form A = 

(A) The pair for the chual 0(3)-field equations: 
are 3 x 3 matrices. Using this notation we present the following UV pairs. 

where .? = i) and adjA represents [.?, AJ. 
@) The pair for the Landau-Lifshitz equation: 

It is clear that these pairs are polynomial, in contrast to the already-known pair of 
Sklianin-Borovik [6,7] and Cherednik 181 which are elliptic in 1. 

In order to obtain the LLE from this pair, one has to additionally put k,? = -ti:, 
~s = 1,2,3.  It should be mentioned that for j s  = 0, s = 1 ,2 ,3  pair (10) becomes equivalent 
to the pair 

1 
U = -M(u)  2 

A2 A v = -Mu) 4 + - M ( u  2 x ux), 

The nonlinear evolution equation which corresponds to this pair is the Heisenberg 
ferromagnet equation (HFE): 

uc = U  x uxx. 

Taking into account the well known isomorphism between the algebras so(3, R) and 
su(Z), pair (1 1) could be written in terms of 2 x 2 matrices. In this way we obtain the well 
known pair for HFE [SI. There are other questions which arise from the pair (IO). As we 
have already mentioned, the pair which has been used up to now for LLE is the Sklianin- 
Borovik pair [6,7] containing elliptic functions in A. It is known, however, that, the HFE is 
gauge equivalent to the nonlinear Schrodinger equation (see 181) and that the first operator in 
the pair for the HFE is gauge equivalent to the Zakhamv-Shabat linear problem. It is natural, 
then, to ask whether the Landau-Lifshitz equation is gauge equivalent to some Schrodinger- 
like equation. It is evident that the operator a, - U in ,the Cherednik pair cannot be gauge 

do not depend on U it is possible that through (10) one can establish the aforementioned 
gauge equivalence. 

equivalent to the Zakharov-Shabat-type linear problem. Since the eigenvalues of 
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3. Polynomial 4 x 4 pairs for CFE and LLE 

The pairs (9) and (10) have an important property which allows us to write them in terms 
of 4 x 4 matrices. They both belong to the Lie algebra so& 3)-the complexification of 
so@, 3): 

soc(3,3) = (A  : A E Horn(@, C6); ATv, + QA = 01 

If A = (", n) ?longs to so&., 3), then aT = -a, AT = -6, pT = y and vice versa. 
A simple similarity transformation establishes the isomorphism between ~ ~ ( 3 . 3 )  and 
so(6, e). Indeed, if we introduce the mabix 

-1 0 
v, = - ( ) . 

T = - ( !  1 ) 
f i  III -iU 

then the similarity transformation A s ?'-'AT converts soc(3.3) into so(6, C). It is well 
known that so(6, C) is isomorphic to sI(4, C)-the algebra of 4 x 4 traceless matrices. Thus, 
it is possible to write the pairs (9) and (IO) in 4 x 4  form. However, one needs to construct 
explicitly, the isomorphism between so&, 3) and sI(4, C). We could not find the explicit 
form of this isomorphism, which is of course trivial, in terms of Dynkin diagrams: 

J-cUQ 
For this reason we shall briefly sketch how one can obtain an isomorphic Cartan-Weyl basis 
for these algebras. 

In order to present the Caxtan subalgebra with diagonal matrices we shall use another 
representation of so&, 3) - so(6, C). Let us introduce 

N 

Then it is easy to see that if R B R  E so&, 3) then B E so(6) and vice versa, where 

Now the Cartan subalgebra h can be defined as 

We shall represent every element (i :) of the Cartan subalgebra by the vector < = (51, CZ, 53). 

The Killing form of so(6) is well known: 
N 

B ( X ,  Y) 2 tr(ad, adu) = 4trXY X, Y E so(6). 

Let the elements ~i from the dual space h' be given by 

00) * i = 1,2,3. 

"hen it is easy to see that the set of simple roots ai, a3, a3 is given by 

a1 = €1 - €2 a2 = €2 - €3 a3 = €2 + €3 

and the set of all roots is then 

A =I=!=ai7fa2.*bi +az).*(Ui +a3),f(ai +a2+a3)): 
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The Dynkin diagram is clearly C-6-c since the elements corresponding to ai through 

the isomorphism established by R are 
at e, 9 

He, = +(l, -1,O) = Q(0, 1, -1) x, = +CO, 1.1). 
It is then easy to calculate that 

(Here and below we use the notation and, normalizations of [9] which are universally 

Of course, the Dynkin diagram is isomorphic to the diagram of the algebra 

' 

1 1 1 
(0133 a3) = ;i (Eli WZ) = (a13 013) = -3 (a2, (U,) = 0. 

accepted.) \ 

sl(4, C) - A3. As is well known, for this algebra 

B(X,  Y )  = tr(adxadr) = StrXY, X ,  Y E sI(4, C). 

The Cartan subalgebra is 

If we introduce Zi E 2 by 

2i (diag(h1, hz, h3,'hd)) =hi  

then the set of roots A is A = { & - Z j ,  i # j } ,  i, j = 1,2,3,4 and the set of simple roots 
is given by 

- A *  ^ ^ ^  a1 '= €1 - €2 62 = (2 - 63 a3 = €3 - €4. 
e, Bt 2 3  The Dynkin diagram is m. We can then define an isomorphism @ of the root 

systems which also supports that for the simple roots: 

@(LYI) = 8 2  @M = 81 @(O13) = 83 

and we can extend @ by linearity. It is well known that the mapping @ then generates the 
isomorphism of the algebras. We shall denote it by W, Finally, we have 

'€'(Ea) = 01 E A 

Y(Hej) = Hp(or) i = 1,2 ,3  

where (Eu ,  H , , a  E A ,  i = 1,2,3) and ( $ 6 ,  H , , , ;  E A, i = 1,2,3) are thecartan-Weyl 
basis for so&, 3) - so(6, C) and sI(4, C), respectively. Using the explicit expressions 
for the bases given in [91 we can construct the needed isomorphism. We shall put aside the 
cumbersome but straightforward calculations and present only the final results. 

(i) UV pair for the chiral O(3)-field equations: 



4012 L A  Bordug and A B Yanovski 

(ii) (IV pair for the Landau-Lifshitz equations: 

U = i A l ( & + T )  
V = %(;AA1 -[Ai, AI,] + ;Az,)(A+ 7) 

where 

J i s  given by (15) and A1 by (13). 
We shall make only one comment about the pair for LLE. When j, = 0, s = 1 ,2 ,3  the 

matrices in this pair become elements of the subalgebra SO(4) c sI(4). As is well known, 
so@) is isomorphic to so@) x so(3). Then, for j, = 0 the pair is equivalent to the pair 
(11) or to the well known 2 x 2 pair for HFE. 

4. A new 4 x 4 pair for the generalized LLE in the case of cnoidal wwes 

The simplest generalizations of LLE has the form 

ut = U x uXx + 21 x Jv J = diag(j1, jz, j3). 
(18) 

This describes the anisotropic interaction of two isotropic ferromagnetic lattices. The Lax 
pair for this system was not known until now, except for the case u(x, t )  = u(n - at) ,  
u(x, t )  = u(x  - a t )  referred to as the case of cnoidal waves. For this case the Lax pair of 
the classic type 

V, = V  x v,, + V  x JU { 

L = [ L , A ]  (19) 
was found in [IO] with 6 x 6 matrices belonging to so(3,3). Using the same isomorphism 
as in the previous sections, we rewrite this Lax pair in a new form in terms of 4 x 4 matrices 
belonging to sI(4, C). 

The result of these straightforward calculations can be represented in its final form. The 
Lax pair for the generalized LLE is 

L = -2A’A 1.42 + 1 @ ( A I  + A2) + [(Ai + Ad, (Ai + A&]) - 7 
A = -21Ai A2 

where g = x - a t  and the operators A I ,  A2 and ?have the same form as in (13)-(15). 
We hope that this pair, which looks much simpler than the 6 x 6 pair, will be helpful for 

finding new classes of solutions and for stimulating the search for new Lax pairs in general. 
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5. Conclusions 

We propose new 6 x 6 Lax pairs for the O(3) chid-field equations and for the Landau- 
Lifshitz equation in which the dependence on the spectral parameter is polynomial in contrast 
to the already known pairs in which this dependence is through elliptic functions. Using 
the classical isomorphism between the algebras sI(4) and so@) we express these pairs in a 
much simpler 4 x 4 form. The same isomorphism is also applied to obtain the pair for the 
so-called generalized Landau-Lifshitz system in the cnoidal wave case in 4 x 4 form. 

We believe that the new pairs we have obtained will stimulate the discussion whether 
one obtains the same solutions using essentially different Lax pairs and in finding new Lax 
pairs especially for the generalized Landau-Lifshitz system. We also suppose that the new 
pair for the LLE will be useful in finding the equation which is gauge equivalent to the LLE 
in the same manner as the HFE is gauge equivalent to the nonlinear Schradinger equation. 
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